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Abstract

When performing automatic provenance collection within the op-
erating system, inevitable storage overheads are made worse by the
fact that much of the generated lineage is uninteresting, describing
noise and background activities that lie outside the scope the sys-
tem’s intended use. In this work, we propose a novel approach to
policy-based provenance pruning — leverage the confinement prop-
erties provided by Mandatory Access Control (MAC) systems in
order to identify subdomains of system activity for which to col-
lect provenance. We consider the assurances of completeness that
such a system could provide by sketching algorithms that recon-
cile provenance graphs with the information flows permitted by the
MAC policy. We go on to identify the design challenges in imple-
menting such a mechanism. In a simplified experiment, we demon-
strate that adding a policy component to the Hi-Fi provenance mon-
itor could reduce storage overhead by as much as 82%. To our
knowledge, this is the first practical policy-based provenance mon-
itor to be proposed in the literature.

1. Introduction

Provenance-aware systems offer unprecedented insight into the
workings of computing systems, but retaining provenance demands
considerable storage space. Braun et al. identify excessive stor-
age overhead as a fundamental challenge to automatic provenance
collection [3]. While subsequent work has leveraged compression
techniques to reduce storage burdens [18-20], compression fails
to address one of the root causes of storage overhead; namely, that
much of the provenance we collect is simply not useful. Even when
compressed, this uninteresting provenance will continue to occupy
space indefinitely. To date, this has been an unfortunate concession
in provenance-aware systems; in order to assure the completeness
of the provenance description of interesting system activities, we
must conservatively collect everything.
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Figure 1: Growth of Hi-Fi’s provenance log during kernel compi-
lation using different LPM storage backends. Log growth is only
manageable when compressed with gzip, but in this form it can-
not be efficiently queried.

We consider the matter of provenance collection for Mandatory
Access Control (MAC) enabled systems, where a statically defined
policy dictates where system objects are permitted to flow. MAC
policies encode potentially invaluable information for the purposes
of provenance collection, stating explicitly that certain system ob-
jects will never interact. It follows that a MAC-aware provenance
monitor could conceivably avoid the recording of uninteresting
provenance, instead taking only what it needs to describe a par-
ticular application or set of applications.

We describe the requirements of such a provenance monitor in
this work, analyzing a system’s existing security contexts in or-
der to record complete provenance over a subset of system op-
erations. We call our system Provenance Walls, named after our
method of MAC policy analysis that extends Vijayakumar et. al.’s
Integrity Walls [16] project. Provenance Walls leverages the con-
finement properties of the SELinux Multi-Level Security (MLS)
policy to record a complete provenance history within an individ-
ual application’s Trusted Computing Base (TCB). We propose an
architecture for Provenance Walls based on the Linux Provenance
Modules (LPM) framework [2]. By performing a proof-of-concept
experiment by making minimal modifications to the Hi-Fi system
[15], we show that our approach can reduce storage overheads by
as much as 81%. Provenance Walls thus stands to dramatically im-
prove the cost-benefit ratio of provenance collection.

2. Background

A fundamental issue in automated provenance collection is the
incurred storage overhead. Provenance can quickly grow to dwarf



the data it describes. This is especially the case with fine-grained,
system-level provenance collection mechanisms such as Hi-Fi [15]
and PASS [14]. Even worse, such systems are prone to collecting
information that is completely uninteresting or irrelevant to the
system’s purpose [3], making it harder to justify the incurred costs.

To demonstrate, we plotted the growth of the provenance store
for LPM’s Hi-Fi module during a kernel compilation benchmark.
In LPM, a recorder daemon in user space processes and stores a
kernel relay provenance stream [2, 15]. The results are shown in
Figure 1. We first used Zlib to write provenance to a compressed
file that occupied only 450 MB of storage; however, the provenance
could not be easily queried in this form. Without compression, the
same routine generated almost 5 GB of provenance. We attempted
to provide a better balance between storage and performance by re-
placing the GZip daemon with one that wrote provenance to an in-
memory graph database using the SNAP library [10]. This provided
highly efficient querying, as well as some compression by avoiding
the creation of redundant graph components. We approximated the
storage overhead through polling the virtual memory consumed by
the daemon process in the /proc file system. However, the SNAP
graph still grew to 1.64 GB in size. This problem is not isolated to
Hi-Fi; PASSv2 reports similar storage overheads, about 1.28 GB,
in its own kernel compilation benchmark [13].

This motivates the need for provenance pruning [3] — schemes
that selectively remove provenance to save space, while also main-
taining sufficient information for the provenance to be recon-
structed efficiently and completely. Web compression and dedu-
plication have been employed to reach storage reduction ratios of
3.31:1 [20], and the “Web+Dictionary" technique further improves
the compression ratio up to approximately 5:1 [18, 19].

While promising, these approaches fail to address a root cause
of storage overhead — when performing system-wide provenance
capture, space is inevitably wasted by the provenance of back-
ground activities and other system noise (e.g., crond). The behav-
ior of such activities is well understood, and can be secured through
traditional type enforcement. This provenance is therefore unlikely
to be interesting to an administrator, but if collected it will continue
to occupy space even after compression. The notion of interesting
provenance is often domain-specific, leading Braun et. al. to call for
a policy-driven method of provenance pruning [3], but to the best
of our knowledge a policy-based collection mechanism has yet to
appear in the literature. We propose an approach to policy-based
pruning in this work.

3. Provenance Walls

In this section, we propose an approach to policy-based provenance
pruning that is implemented in the provenance collection mecha-
nism itself. We call this approach Provenance Walls, as it lever-
ages a method of policy generation that extends Vijayakumar et
al.’s Integrity Walls project [16]. Below, we describe the challenges
associated with designing a policy for the selective collection of
provenance.

Suppose an administrator was interested in the provenance of
just a single application on a system, such as the Apache web
server (httpd). Let us assume that this administrator has access
to a policy-based provenance monitor, allowing them to describe
the system events for which they would like to collect provenance.
What would the administrator include in the policy? A naive ap-
proach would be to specify a policy to only generate provenance
for the operations performed by httpd. The immediate problem
that such an approach poses is that the provenance history will not
be complete. First, this provenance will not include the actions
of helper processes (e.g., htaccess) that inform the execution
of httpd. Even if the administrator expanded the policy to in-
clude these helper processes, they cannot account for the possibil-

Figure 2: The intuition to our approach is that provenance objects
and relations can be mapped to mandatory access control labels and
transitions, forming an Information Flow overlay to the provenance
graph. In the information flow plane, edges encode permissible
future actions (e.g., MayWrite), whereas in the provenance plane
edges encode historic events (e.g., WasGeneratedBy).

ity that other objects on the system will flow into httpd, causing
its provenance graph to be incomplete. An incomplete provenance
graph cannot provide a full explanation as to the ancestry of objects
or the events that have taken place on a system. This diminishes the
value of the graph in benign environments, and renders it useless in
malicious environments where an adversary could operate covertly
in the unmonitored space.

We propose that Mandatory Access Control provides an envi-
ronment for the selective recording of provenance while preserving
completeness properties. In a MAC-enabled system, every system
object is assigned a security label, and a policy dictates the per-
missible interactions between different labels. Many applications,
including Apache, publish policy modules that define application-
specific labels and access controls. We observe that such a pol-
icy, like provenance, can be expressed in graph form. Provenance
graphs encode the history of actual flows between objects during a
system’s execution, while MAC policy graphs encode the permis-
sible flows between objects during system execution. Additionally,
security labels provide a complete mapping between the prove-
nance namespace and the MAC namespace. We can therefore imag-
ine a MAC policy as an overlay to the provenance graph, shown in
Figure 2. Pictured in the simplified example is a traditional prove-
nance graph that has used 3 files in order to generate 1 file. In the
Information Flow Plane, we can see that these objects map to se-
curity labels, and that all of the operations in the provenance plane
are also described in the MAC policy. While the mapping is not 1:1
(e.g., etc_t), all events described in the provenance history will
have been previously authorized in the MAC policy.

Given the nature of this overlay, we can define a provenance
policy in terms of security labels in the MAC namespace. In Prove-
nance Walls, the provenance policy is defined as a list of security
contexts, such that the new provenance record will be created if
and only if one or more of the objects associated with the event has
a security context that appears in the provenance policy. However,
In order for this approach to be effective, we require a means of
identifying subsets of security labels that account for all flows in
a given subdomain of system operation. For convenience, we will
describe this property as selective completeness — the ability for the
provenance monitor to produce a complete description of a given
system subdomain in perpetuity. Next, we describe how to identify
sets of security labels that provide such an assurance.
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Figure 3: To preserve selective completeness, Provenance Walls
must record system events where a tracked system object interacts
with an untracked object. This introduces boundaries in the prove-
nance graph, where collection halts at a relation between one node
within the policy (Policy Hit) and one node outside of the policy
(Policy Miss). In these cases, we must provide an explanation to
the user as to why provenance collection halted after the boundary.

(b) Inbound Boundary

3.1 Policy Composition

How can we define a policy that provides the selective complete-
ness property? Because provenance must offer a complete history
of the data it describes, selective provenance collection is a difficult
problem. Failure to collect all of the necessary information could
result in gaps in a provenance history, rendering it unfit for later
use. However, if the provenance policy is carefully constructed to
leverage MAC separation of domains, then it will have a formal as-
surance that no object outside of the policy can flow to an object
that matches the policy.

For further guidance, we can turn to past work on the static
analysis of MAC policy. We extend Vijayakumar et. al.’s Integrity
Walls method of mining SELinux policies to identify an applica-
tion’s Minimal Trusted Computing Base (MTCB) [16]. Integrity
Walls builds an MTCB for a subject application s by partitioning
a system policy P into a set of trusted labels I and an untrusted
set Os. Given a base SELinux policy, an application policy mod-
ule, and its dependency modules, Integrity Walls identifies the fol-
lowing groups of labels: executable writers that have permission to
write s’s executable file, kernel subjects with permission to write
s’s underlying kernel objects, and helper subjects, which are dis-
tinct applications whose subject labels appear in s’s policy module
and are trusted by s. Together, these labels make up I and form a
trusted computing base of the subject application of s.

Because the label set I provides a complete description of
system objects that can flow into the subject application s, I; can be
used as a provenance policy that provides selective completeness.
Below, we imagine the existence of a fully implemented version
of Provenance Walls, and identify the properties that this system
would need to be able to provably demonstrate to the user.

3.2 System Properties

‘We now consider several additional capabilities that the Provenance
Walls system would need to provide in order to be useful. The
methodology described above is sufficient to provide the selective
completeness property; however, Provenance Walls will still pro-
duce an incomplete graph of system execution. In practice, it will
be necessary for the monitor to be able to produce “explanations”
of the content of the provenance graph. The below explanations
can be produced by Provenance Walls using the MAC policy, the
provenance policy, and the actual provenance log.

Why is this subgraph missing?
Provenance Walls introduces boundaries in the provenance

graph, represented by a relation between two nodes in which one
node falls within the provenance policy while the other node does

not. In analyzing the graph, users may require an explanation as
to why a boundary exists. There are two kinds of boundaries that
need be considered. Shown in Figure 3, Provenance Walls records
the “next hop" for all objects within the policy, creating the poten-
tial for outbound and inbound boundaries. The outbound boundary
(Figure 3a) implies that an object within the policy is dependent on
an object that falls outside of the policy. In fact, such a boundary
cannot exist in our graph due to the way in which I, is constructed;
the labels for all objects that can flow into application s are nec-
essarily a part of s’s MTCB, and therefore will be included in the
graph. The inbound boundary (Figure 3b) represents a flow that has
left the MTCB, and is therefore possible. In this case, it is sufficient
to demonstrate to the user that this missing subgraph represents a
relation from a member of I, to a member of O;. If the validity
of the provenance graph is in question, one could further perform
reachability analysis to prove that the omitted subgraph cannot flow
back into the MTCB.

Where can this data go?

Our approach to policy generation assures that no system object
outside of I can flow into I5; however, data produced by members
I, may flow to other parts of the system, e.g., into the network.
Unfortunately, Provenance Walls does not generate provenance for
these activities. However, through analysis of the MAC policy,
Provenance Walls may still provide an explanation as to what will
happen to such data. When the user comes across an inbound
boundary as shown in Figure 3b, they could request an explanation
of all the security labels that a given provenance object might flow
to. Provenance Walls would then return this subgraph of the MAC
policy for the user’s review. The user may be surprised to find
that a particular object in the provenance graph can flow to certain
security labels, e.g., can be sent out over the network, facilitating
iterative a re-configuration of the MAC policy.

4. Challenges

In this section, we sketch an architecture that could provide the ca-
pabilities described in Section 3. Our system will interoperate with
the Linux reference monitor provided by Linux Security Modules
(LSM) [17]. While our approach could be generalized to any LSM,
we choose SELinux because it is ubiquitous on Linux systems and
its MLS policy has been extensively analyzed in the literature [8].
Below, we consider several of the most critical design decisions
for the Provenance Walls architecture, and argue the validity of our
choices.

Accessing Security Contexts. The most fundamental challenge
in Provenance Walls is that of creating a provenance collection
mechanism that is fully aware of MAC enforcement. While some
of a system’s security labels can be accessed by privileged pro-
cesses in user space (e.g., viewing the security labels on files with
getfattr), other context is opaque to user space (e.g., a pro-
cess transitioning to a different privilege state). Because of this,
our collection mechanism must reside within the kernel. It is not
necessary to integrate our collection mechanism into the reference
monitor itself due to the fact that all kernel modules have unre-
stricted access to kernel memory. Within the kernel, security con-
texts are embedded within the struct of all major kernel objects as a
void pointer. Our collection mechanism can interpret these fields
by including the security struct declarations of the active LSM. For
example, for SELinux, our collection mechanism would need to
include objsec.h.

Provenance Collection Mechanism. Provenance Walls would be
most effective as a lightweight retrofit of an existing provenance-



Administrator

004
t»\‘r -

Wl

What applications do | want to
Collect provenance for?

—
Prov. Wall
Policy

Prov. Policy
Generator

Prov.
Recorder

User Space
(Unconfined)
User Space
(MAC Protected)

Prov. Wall
Utility

Provenance

Application
22 Store

v Create provenance
only if access request

matches policy... Kernel
Objects

Reference If access granted...

Monitor Provenance

Monitor

Kernel Space

Figure 4: Design of the Provenance Walls Architecture.

aware system. This approach is the simplest, and also the most re-
liable, as creating an OS layer provenance monitor is a time con-
suming and error prone process. The two most viable candidates to
serve as the foundation of our system are PASS [13] and Hi-Fi [15];
SPADE is not an option because it does not run in kernel space [7].
For our system, Hi-Fi is the superior choice because it is already
implemented as an LSM. This will provide tighter integration be-
tween the reference monitor and our collection mechanism. More
specifically, we will use the LPM port of the Hi-Fi system. Use
of LPM’s Hi-Fi port permits permits us to enable SELinux with-
out relying on module stacking [5] while still providing complete
mediation guarantees [2].

Early Boot Provenance. To provide early boot security, the Linux
kernel loads and registers LSM prior to the virtual file system layer
or user space. As a consequence, during the early boot, our col-
lection mechanism will not have access to the provenance policy.
Pohly et al. face a similar problem in [15], in which Hi-Fi’s user
space daemon cannot be loaded until late in the boot process. They
solve this problem by storing early boot provenance in a separate
boot buffer, then registering a callback function to flush the boot
buffer once the VFS had been initialized. We can extend this solu-
tion to account for the fact that our system will not have immediate
access to the provenance policy.

Early in the boot, our system will conservatively create prove-
nance records for each system event, storing them in the buffer
along with the associated security identifiers (SIDs) of the event.
Each SID is only 32 bits long, and SELinux provides tools for trans-
lating SIDs into character string security labels. Once Provenance
Walls is notified that the policy is loaded, it can replay the buffer
and perform policy checks of each of the associated SIDs, sending
events to the recorder only if they match the policy. Provenance
Walls may need to increase the early boot buffer size compared to
Hi-Fi’s because of the space required to record security contexts.
However, Hi-Fi’s buffer was only 1 KB in size [15], and recording
SIDs will require at most 100 bits per event, so we are confident
that the increase in memory overhead will be reasonable.

Overview. A full overview of the Provenance Walls design is pic-
tured in Figure 4. Like Hi-Fi, Provenance Walls places a monitor
in kernel space. The collected provenance is communicated over
a kernel relay to a recorder that interprets the byte stream and
records the provenance. Provenance Walls also introduces several
new components. The first is a policy generator that combines ad-
ministrator input with static analysis of an SELinux MAC policy in

order to synthesize a provenance policy. This policy is transmitted
to kernel space using the securityfs virtual file system. Once
the policy is loaded, the monitor begins to selectively create prove-
nance according to the policy.

5. Storage Reduction Test

We conducted a basic experiment to gain a preliminary sense of
the potential storage savings with Provenance Walls. Our testbed
was a modestly provisioned Linux VM that was running both the
SELinux LSM as well as a modified copy of the Hi-Fi LPM. In
this test, we imagined a scenario in which we did not wish to
collect provenance for kernel compilations due to the large amount
of provenance that is produced by this task.

We made the following minimal changes to Hi-Fi: first, we
included the header file that defines the SELinux object security
structs, as well as the header file that defines a set of functions for
performing SID to context translation; second, we hardcoded a sim-
ple policy check to see if the event’s associated SIDs mapped to the
user_t type. This label is associated with the user’s home direc-
tory. We then booted into the system and ran a kernel compilation
benchmark from within our home directory under two conditions.
In the first condition (tracked), events with the user_t type were
recorded, and the second condition (untracked) they were ignored.
This allowed us to filter the provenance of the kernel compilation
task from the second condition’s provenance log.

The tracked condition’s compressed provenance log was 54 MB
in size, while the untracked condition’s compressed provenance
log was just 10 MB, representing an 82% reduction in storage
overhead. This test serves as anecdotal evidence of the potential
savings using our approach. By dramatically reducing the size of
the provenance graph, Provenance Walls would also improve the
performance of subsequent queries on the graph. Of course, we
note that this is just one example, and not a complete evaluation.
The level of storage reduction will vary depending on the policy
and the amount of system activity that can be filtered.

6. Related Work

Provenance Walls is a MAC-aware implementation of a prove-
nance monitor [12]. McDaniel et al. define a provenance monitor
as a provenance collection mechanism that provides the reference
monitor guarantees laid out by Anderson [1]: complete mediation,
tamperproofness, and verifiability. In other words, a provenance
monitor is a recording instrument that provably captures complete
provenance in a manner and is secure against attack or circumven-
tion. Pohly et al.’s Hi-Fi system is a security module that collects
whole-system provenance [15], detailing the actions of processes,
IPC mechanisms, and even the kernel itself (which does not exclu-
sively use system calls). Hi-Fi provides a partial implementation
of a provenance monitor [15], but its reference monitor guarantees
do not apply to layered or distributed provenance, nor is a secure
deployment demonstrated in which Hi-Fi can self-protect from at-
tack. Bates et al. introduce Linux Provenance Modules (LPM), a
general-purpose framework for the design of provenance monitors
[2]; LPM includes a port and extension of Hi-Fi that addresses these
shortcomings. We intend to build Provenance Walls as a new LPM
provenance module.

The majority of provenance-aware systems proposed in the lit-
erature were designed for benign environments [4], and are there-
fore not provenance monitors. Lyle and Martin sketch the design
for a secure provenance monitor based on trusted computing [11].
However, they conceptualize provenance as a TPM-aided proof of
code execution, overlooking interprocess communication and other
system activity that could inform execution results, offering coarse-



grained metadata compared to other systems such as PASS [13, 14]
and SPADE [6, 7].

7. Future Work

This work marks just the beginning of our exploration of the inter-
actions between provenance and security mechanisms. The com-
plex architecture sketched in Section 4 must first be developed
and implemented, including an exhaustive analysis of the system’s
properties and a formal demonstration of selective completeness
that integrates policy and implementation. We are just now begin-
ning to implement our LPM-based provenance module. Because
the storage reductions provided by Provenance Walls are domain
specific, we also intend to characterize the classes of applications
for which our approach is most beneficial.

Finally, we have uncovered in this work that selectively record-
ing provenance creates a tradeoff between cost and flexibility.
Whereas the metadata collected by systems such as PASS and Hi-Fi
are general enough to support a variety of uses, our approach omits
provenance that is critical to certain environments. For example,
because Provenance Walls does not track flows that have left an
application’s MTCB, it is ill suited for performing forensics related
to data exfiltration [9]. As part of our upcoming study, we hope
to better characterize this tradeoff. Additionally, we will investi-
gate other methods of policy generation that can provide selective
completeness properties.

8. Conclusion

The inevitable storage overheads associated with automatic prove-
nance collection are made worse by the fact that much of the gen-
erated lineage is uninteresting, describing system noise and back-
ground activities that lie outside the scope of user interest. In this
work, we have proposed a new method of policy-based provenance
pruning. We sketched the design a policy-based provenance col-
lection mechanism, and proposed a means of demonstrating the
completeness property through reconciling the provenance log with
MAC information flows. Using a minimally modified copy of the
Hi-Fi monitor, we conducted a simplified experiment to discover
that our approach can reduce storage overheads by as much as 82%.
Provenance Walls thus promises to significantly decrease the over-
heads associated with provenance collection.
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